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Overview 
The layout of the system that we developed during the Phase 1 project is shown in Fig. 1.  
The primary components of the system are Analyst1, Mathematica2, and MICHELLE3.  
Analyst is a commercial electromagnetic analysis tool and acts as the integration 
platform.  It supports the other codes and controls the overall process.  Mathematica is a 
commercial symbolic mathematics package that performs the optimization (under control 
of Analyst).  MICHELLE is a 3D gun code developed by SAIC that was used to in our 
study. 

 
Fig. 1. System architecture.  Analyst uses its ObjectCAD and ObjectMesh servers to create geometry and 
generate finite element meshes, and it can also generate input files for MICHELLE, run the solver, and 

process output files. 

Mathematica is used to simplify the experimentation with various optimization strategies.  
The actual optimization algorithms are coded in Mathematica’s symbolic mathematics 
language, greatly simplifying the process of testing various methods.  Moreover, several 
common optimization methods are already available in Mathematica as native functions: 
the statistical methods differential evolution and simulated annealing, and the Nelder-
Mead simplex method.  Testing these methods does not require any special coding. 

In the most recent period of the Phase 1 project we have extended the MICHELLE 
interface in Analyst to allow the use of geometric parameters in an optimization.  The 
restriction on the number of parameters was also removed, and optimizations with up to 
14 parameters were performed. 

The following system functionality has been demonstrated: 
• Optimization over arbitrary number of parameters. 
• Inclusion of secondaries in the analysis. 
• Use of adaptive mesh refinement (AMR) in the analysis. 

                                                
1 Analyst is a commercial finite-element analysis package.  See www.staarinc.com for more details. 
2 Mathematica is a commercial symbolic mathematics package.  See www.wolframresearch.com for more 
details. 
3 J. Petillo, et al., “The MICHELLE three-dimensional electron gun and collector modeling tool: theory and 
design,” IEEE Trans. Plasma Science, 30, June, 2002, pp. 1238-1264. 
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In tests on an idealized collector geometry we were able to show improvements in 
efficiency over an initial design of as much as 16% with differential evolution and the 
Nelder-Mead method using various strategies. 

Enhancements to the MICHELLE Interface in Analyst 
An interface in Analyst to the MICHELLE solver was created early in the project.  Our 
most recent work has extended this interface to allow the specification of geometric 
parameters as optimization targets. 
After a model has been created in Analyst, an optimization is performed using the 
optimization “wizard”, which is a sequence of panels that help set up the process (Fig. 2).  
The goal function is defined in Mathematica, and it is nominally a function of both the 
parameters and the result metrics (collector efficiency in this case).  The link to 
Mathematica is discussed in more detail in the next section. 

  
Fig. 2. First two panels of the optimization “wizard” within Analyst.  The first panel is used to define 

what is to be optimized, and the second panel is used to pick which parameters to include in the 
optimization, and to define initial values and valid ranges. 

For the purposes of this work, the goal function was defined as the square of the collector 
efficiency, and Mathematica was instructed to find the maximum of the goal function. 

Optimization Link to Mathematica 
The current optimization architecture employed within Analyst makes use of 
Mathematica to control the optimization process.  Via its MathLink interface, Analyst 
provides Mathematica with information about the number of parameters, parameter 
ranges, algorithm selection, etc.   
Mathematica calls a generic Analyst interface function every time it wishes to evaluate a 
parameter vector.  This problem independent function updates the geometry and 
boundary conditions to reflect the requested parameter vector, runs the analysis, and 
returns the selected results (e.g. efficiency).  A metric function (defined by the user in the 
Mathematica language) combines the results (if there is more than one) and returns an 
appropriate metric value to the optimization routine.  This function can be customized to 
include weighting particular results or imposing specialized constraints. 
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A table of all of the analyses that were performed is available to the user as the 
optimization is running.  Mathematica determines when to stop the optimization based on 
user-specified convergence criteria.    

Optimization Methods 
Three different optimization methods have been considered so far: simulated annealing 
(SA), differential evolution (DE), and the Nelder-Mead (NM) method.  Brief descriptions 
of these methods are given in the following paragraphs.  Note that these methods can be 
used to find minima or maxima, but for simplicity we refer only to minima in the 
discussion. 
Simulated Annealing4 
In this method an initial random parameter vector is generated that satisfies the parameter 
constraints )(

max
)(

0
)(

min
iii rrr ≤≤ , and the objective function is tested at this point.  Subsequent 

parameter vectors are chosen using an expression of the form 

[ ])()( min11max
0

1 rrrrrr −+−+= −−− nnnn ba
T
T  

where T is the current “temperature” (by analogy with actual annealing), T0 is an initial 
temperature, and a and b are bounded random variables.  The objective function is tested 
for each new parameter vector, and the new parameter vector is kept if the objective 
function is reduced.  The parameter vector may also be kept if the objective function 
increases, with a probability given by the Boltzmann factor: 

T
f

ep
∆−

=  

where f∆ is the normalized change in the objective function (this feature enables the 
process to “escape” from local minima). 
SA proceeds by generating and evaluating new parameter vectors at a constant 
“temperature” until adequate statistics are obtained, then the temperature is reduced and 
the process is repeated.  The efficiency and result of the optimization can be quite 
dependent on the initial temperature and the “cooling schedule”, that is, the way the 
temperature is varied during the process. 

SA is used in circuit design and other endeavors where objective function evaluations are 
relatively inexpensive.  Our experience with it in collector optimization is that it requires 
too many analyses to be useful in most cases. 
Differential Evolution5 
This method comes from a class algorithms based upon evolutionary principles.  To start 
the process, an initial “population” of random vectors { }0,kp  is created that all satisfy the 
parameter constraints.  At each iteration (called a “generation”) of the process, new 
vectors are obtained from the previous set using the following concepts: 

                                                
4 S. Kirkpatrick, et al., “Optimization by simulated annealing,” Science, 220, May, 1983, pp. 671-680. 
5 R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization 
over continuous spaces,” J. Global Optim., 11, 1997, pp. 341-359. 
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• Mutation.  A new vector is formed via a combination of existing vectors of the 
form 
     ( )GlGkGiGi ,,,1, pppv −+=+ α  

• Recombination.  A candidate “child” vector is formed by taking some (randomly 
selected) parameter values directly from the parent Gp , and the rest from the 
differential combination vector Gv , i.e., 
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• Selection.  A parent vector is replaced with a child vector if the objective function 
is reduced.  Otherwise, additional children are created and tested until either one 
is found that reduces the objective function or some maximum number of 
offspring is reached.  If no child is more “fit” than the parent, the parent passes to 
the new generation (if they are not eliminated by the aging criterion below). 

• Aging.  A vector can only “survive” for a limited number of generations, 
regardless of its “fitness”. 

As DE proceeds, the population becomes increasingly homogeneous, until at 
convergence all of the vectors are the same.  The process is dependent on the size of the 
population that is maintained, on the number of children that can be generated at each 
step, and other parameters. As with SA, DE can escape from local minima.  Moreover, in 
our tests it generally was more efficient than SA. 
Nelder-Mead6 
This is a direct search method in which a simplex of dimension n+1 is updated (for an n-
dimensional parameter vector) at each step. The volume enclosed by the simplex 
generally reduces until it encloses a minimum of the objective function. 
A step in the process begins with stored values of the simplex vertices (parameter 
vectors) and the associated objective function values.  The parameter vector 
corresponding to the center of the simplex is formed and tested. If the objective function 
at that location is less than at any of the simplex vertices, then a new simplex is formed 
by replacing the vertex with the highest objective function value with the new vector.  If 
the objective function at the center is higher than at one or more of the vertices, a 
different point is selected and tested using a set of simple rules. 

There is relatively little theory on the performance of this method.  It may not converge 
to an extremum, or may not converge at all.  Nevertheless, it is very popular and is used 
in a variety of application areas because it generally works quite well, and because it is 
conceptually and programmatically simple.  We found it to be, by far, the most efficient 
of the methods we tested. 

Optimization of 5-Stage Collector 
Our design system was applied to the optimization of a five-stage collector suggested by 
Boeing7 (see Figs. 3 and 4).  This structure does not correspond to an actual device, so no 
                                                
6 J. Lagarias, et al., “Convergence properties of the Nelder-Mead simplex method in low dimensions,” 
SIAM J. Optim., 9, 1998, pp. 112-147. 
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measured data are available for comparison.  However, it serves to illustrate the principle 
characteristics of the optimization procedure.  The electron beam input to the collector is 
from a traveling-wave tube with circuit efficiency of 83.9%. 
An initial set of optimizations was performed to test the system, and the results from 
these runs are summarized in Table 1.  For these runs we used a relatively coarse mesh 
(11K tetrahedrons), no adaptive mesh refinement, and no secondaries.  There were a total 
of 14 parameters the could be varied, and we took two approaches to the optimization: 

• Staged.  In this approach we did a sequence of three-parameter optimizations.  
Starting with the first stage we optimized over its parameters (V1, A1, Z1), then 
fixed these values at the optimum point and repeated the process for the next stage 
until all stages were completed (the last stage only has two parameters).  The 
initial values and results after each stage are shown in the first 6 columns of Table 
1.  Nelder-Mead was used for these optimizations. 

• All parameters at once.  Here we did a single 14-parameter optimization.  The 
result of this exercise is shown in the last column of Table 1.  Nelder-Mead was 
used for this optimization. 

We also used differential evolution to optimize do the first stage of the optimization 
(varying V1, A1, Z1).  Although this process involved more than 600 analyses (as 
compared to 57 for NM), it achieved an efficiency 2% higher than was obtained with 
Nelder-Mead.  For situations in which small increases in efficiency are very important 
and sufficient computing capabilities are available, it may be worthwhile to use DE even 
though it is relatively slow to converge. 

Z1 Z2 Z3 Z4 Z5

A1 A2
A3

A4

V1 V2 V3 V4 V5Plate voltages

Z1 Z2 Z3 Z4 Z5

A1 A2
A3

A4

V1 V2 V3 V4 V5Plate voltages

 
Fig. 3. Idealized collector model studied with optimization system.  Parameters that were available for 

optimization included the plate voltages (V1-V5), the plate apertures (A1-A4), and the plate axial positions 
(Z1-Z5). 

 

 

 

                                                                                                                                            
7 Xiaoling Zhai, personal communication. 
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Fig. 4.  Image of three-dimensional collector plates created with the initial values of the parameters. 

Table 1. Parameter values and efficiencies for optimization of the collector geometry shown in Fig. 1.  
The initial parameter values and corresponding efficiency are shown in column 1.  The columns headed 
by “Stage n” show the results of the staged optimization where each stage was separately optimized.  The 

final column shows the result when all parameters are used at once in a single optimization. 

Step Initial Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 All
Efficiency 68.00% 74.60% 75.60% 77.80% 79.48% 80.13% 82.16%

V1 -2327 -2508 -2508 -2508 -2508 -2508 -2492
V2 -3421 -3421 -3387 -3387 -3387 -3387 -3385
V3 -3987 -3987 -3987 -4377 -4377 -4377 -4385
V4 -4998 -4998 -4998 -4998 -5494 -5494 -5430
V5 -5750 -5750 -5750 -5750 -5750 -5594 -5646
Z1 0.1715 0.1544 0.1544 0.1544 0.1544 0.1544 0.1710
Z2 0.7339 0.7339 0.7173 0.7173 0.7173 0.7173 0.6938
Z3 1.0176 1.0176 1.0176 1.0902 1.0902 1.0902 1.0202
Z4 1.3244 1.3244 1.3244 1.3244 1.3773 1.3773 1.3550
Z5 2.2756 2.2756 2.2756 2.2756 2.2756 2.2323 2.3904
A1 0.0352 0.0491 0.0491 0.0491 0.0491 0.0491 0.0498
A2 0.1078 0.1078 0.1153 0.1153 0.1153 0.1153 0.1055
A3 0.1460 0.1460 0.1460 0.1470 0.1470 0.1470 0.1358
A4 0.1812 0.1812 0.1812 0.1812 0.1655 0.1655 0.1641

# of runs 57 46 39 36 39 261  
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Secondaries 
Several analyses have been made involving multiple generations of secondary particles.  
The addition of secondaries increases analysis time as expected.  Table 2 illustrates the 
effect of varying the number of secondary generations on efficiency and analysis time.  
These runs were all for 10 cycles, linear interpolation on an 11K tetrahedral mesh, and 
with approximately 3000 input particles.  An image of the particle distribution for the 
three-generation case is shown in Fig. 5.  As expected, additional secondary generations 
reduce the efficiency of the collector.  Optimization runs involving secondaries are 
planned for the near future. 

Table 2. The effect of adding secondaries to the analysis for the initial parameter vector (shown in 
column 1 of Table 1). 

Number of 
Secondary 

Generations

Change in 
Computed 
Efficiency 

(%) 

Analysis Time 
(sec) 

0 0 82 

1 -17.03 105 

2 -20.06 133 

3 -20.78 169 

 
Fig. 5.  Image of particles for 3 generations of secondaries. 
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Adaptive Mesh Refinement (AMR) 
A number of AMR analyses have been performed to date.  After each solve in an AMR 
sequence, MICHELLE is responsible for creating a list of elements that should be 
refined.  The MICHELLE solver setup includes parameters for controlling what fraction 
of the initial elements should be included in the list as well as how these elements should 
be selected.  The following table illustrates the change in efficiency versus AMR iteration 
number using the following analysis settings: 

• 1% refinement fraction. 
• Refinement based on charge only. 
• 10 cycles. 
• 2 generations of secondaries. 
• 3000 input particles. 
• Cubic interpolation for the potential solve. 

From these results it is clear that AMR must be included during optimization for accurate 
results, particularly if a relatively coarse initial mesh is used. We expect to use AMR in 
optimizations performed in the Phase 1 Option. 
Table 3. The effect of adaptive mesh refinement on the analysis for the initial parameter vector (shown 

in column 1 of Table 1). 

Iteration 
Number 

Number of 
Elements 
(x1000) 

Change in 
Efficiency 

Over 
Initial 

Mesh (%) 

1 11 - 

2 13 +1.23 

3 17 +2.35 

4 22 +2.74 

5 33 +2.82 

6 59 +3.20 

Plans For Phase 1 Option 
Should the Option be funded, we will work in the following areas: 

• Demonstration of “realistic” optimization sequence that involve secondaries, 
adaptive mesh refinement, and repopulated spent beams. 

• Work on adaptive mesh refinement process. In particular, to consider the effects 
of various combinations of refinement metrics on the convergence behavior of 
AMR as applied to collectors. 

• Further work on the interface to improve usability. 
 


